Teaching philosophy statement:
Educational psychology example

To be successful practitioners in the field, a deep understanding of basic concepts of educational theory and its practical applications to classroom teaching are necessary. Thus, lectures and class discussions in my introductory courses focus on these core concepts. When we discuss key scholars and figures in education and psychology, factual details like dates and other historical data are secondary; instead, I focus on their lasting contributions. Even details of their theories that might be discussed at length in other courses are glossed over if they are no longer relevant or applicable; e.g., many aspects of Freudian and behavioristic psychology are given short shrift in favor of more lasting contributions of others. Specific examples of application to teaching are discussed and worked out.

Then students are given group problem-solving activities, in which they must work out potential applications of educational theories (such as ideas regarding pragmatic and learner-centered teaching) to specific teaching situations. For example, students are asked to work out examples of how Csikszentmihalyi's concept of psychological flow could be applied to making for engaging classroom experiences, in both lecture-based and hands-on activities; or they are asked to apply personal attribution theories to dealing with specific case studies of troubled, demotivated students. By doing so, my students develop a deeper understanding of the concepts and theories of the course, and how they can be very practical and applicable to specific real-life situations, through problem-solving group exercises.

Group work is regularly used, because this promotes a deeper understanding of the concepts as they learn from each other, and by doing so, they often experience some of the concepts that they are trying to apply. For example, some groups experience some degree of psychological flow as they become caught up in the process of working out applications of flow, attribution theories, and other concepts. During the wrap-up time at the end of the group activities, I am able to point out, or have students identify, how they themselves experienced some of these psychological dynamics in their group problem-solving processes.

This emphasis on conceptual hands-on learning even extends to my research methodology course. The course consists of three components: general research concepts, qualitative methods, and quantitative methods. In each section, I move from giving specific examples to having students work in groups, in which they discuss research scenarios and application of the concepts to research situations. In discussing statistics, I distill statistical methods to the most basic concepts, including comparisons and similarities among different statistical models. Relatively little math is used, except for x-y plot graphs, and simple algebraic models, which I use to explain the similarities and differences among various techniques. The basic model equation of \(y = x_1 + x_2 \ldots \) can help explain different variable types, and basic tools such as t-tests, ANOVAs, regression, logistic regression, \(\chi^2 \) tests, factor analysis, and hierarchical linear modeling. Thus, we are able to focus on the conceptual bases of these techniques and the types of research questions that the different techniques can be applied to.