Articulating your teaching philosophy

Kent Lee

Center for Teaching and Learning
Korea University

Spring 2011
Articulating your teaching philosophy

Kent Lee
Center for Teaching and Learning
Korea University
kentlee7@gmail.com, kentlee@korea.ac.kr
25 March 2011

Abstract
At some point one may have to provide a statement of one’s teaching philosophy, e.g., for tenure review. This can be difficult to write if one is not aware of one’s philosophy of teaching. Yet everyone has some form of teaching philosophy that one follows, which guides our actual classroom teaching practice. Yet we are often not able to express it, because this consists of various assumptions and values that we have not consciously thought about. This workshop will help you to examine your philosophy and verbalize it, and then put it in writing. This is not only important for tenure or job purposes, but also because being aware of the principles that guide your teaching will help you become a better teacher.

Outline
1. Introduction to teaching philosophy
2. Philosophy of Adult Education Inventory [PAEI]
3. Your academic worldview
4. Self-efficacy
5. Writing your teaching philosophy statement
6. Examples
1 Introduction

You do have a teaching philosophy. However, you may not be aware that you do. If you teach, you follow some kinds of assumptions that guide what you do as a teacher and what you do in the classroom. We will discuss the survey that you are to fill out about your teaching preferences, which will help you to introspect about your teaching philosophy. We will also examine your assumptions that may be unique to your field—your academic paradigm, that is, your academic worldview and ways of thinking. This affects how work is done in your field, and in turn, the kinds of skills that you consider important to convey to your students. We’ll also look at what is called self-efficacy, or your sense of effectiveness as a teacher. After identifying and articulating all these assumptions, we can bring everything together into a coherent, written teaching philosophy statement.

1.1 Defining teaching philosophy

We all have some form of a teaching philosophy that we follow, even if we have not consciously considered it. It may be hard to articulate it—to consciously introspect about it, identify the tenets of our personal philosophy, and express it. Yet in teaching we all follow some kind of theory that guides what we do as teachers. These are assumptions and values—a values system—that guide how we plan courses, lecture, develop instructional materials, interact with students, and assess students’ performance.

Your teaching philosophy will consist of values and assumptions regarding issues such as these:

Students: Your attitude toward your students, your beliefs of what students are like, and how they learn.

Purpose of university education: Your values and beliefs about the purpose and goals of university education, including education, learning, and training in your field.

Learning process: How do you believe students in your field or your courses learn? How do they learn best? How should they learn better? How does this influence the kinds of assignments, classroom activities, and exams that you give?

Subject matter: What is important for students to learn, and why are they important? What are your specific instructional objectives? What is the purpose and benefit of learning the contents that you teach? What aspects of the field taught in your courses most important, and why are they more important than others? How do these considerations lead to your main instructional objectives and course objectives?

Your teaching philosophy is probably influenced by your past educational experiences. Along the way, you have developed assumptions and values that explain how you learned and why you learned, and why your teachers taught you in a certain way. This process continues into your teaching career. But as implicit assumptions—not consciously worked out—they can suffer from the following drawbacks.

• unrecognized, not consciously worked out
• internally inconsistent
• partially formulated, i.e., incomplete

And this in turn leads to two potentially conflicting or inconsistent sets of beliefs, a disjunct between:

• espoused philosophy: what you are able to communicate to others, and
• operational philosophy: what you really operate on
The espoused philosophy may consist of what we think education teaching should be like, and values that we have heard others espouse. The operational philosophy is what actually guides your practice, perhaps unknown to you. Examining your beliefs will help you as a teacher by doing the following:

1. Identifying your specific operational beliefs
2. Search for inconsistencies or contradictions within your belief system, especially if you’ve been influenced by very different educational philosophies or practices
3. Discovering the basis of your beliefs
4. Developing those beliefs that have not been well developed
5. Deciding whether to keep or discard some beliefs, e.g., those that may be inconsistent or unhelpful for your teaching
6. Becoming a more reflective and more effective teacher

2 Philosophy of Adult Education Inventory

This questionnaire will help you think about your teaching philosophy in educational terms, the assumptions that guide your teaching, and what this all means for how you like to conduct your classes and teaching. Based these results, you can reflect on your teaching style and philosophical assumptions, and whether you want to make changes in light of your results.

2.1 Interpreting your results - Understanding the classifications

The PAEI (Zinn, 1990) will likely show that you are strong in one, two, or perhaps three categories. Here are brief descriptions of these educational philosophies.

2.1.1 Liberal view

The classical liberal view is the oldest and most traditional of the major educational philosophies. It stresses development of intellectual ability of the mind, intellectual development, and being intellectually well rounded. It also emphasizes study to become a competent, skilled practitioner or professional in the field. Thus, one values and focuses on content mastery, with the educator viewed as expert or authority, who imparts his/her knowledge to the students.

The teacher presents the material via lecture, and students demonstrate mastery of the content on tests. Content mastery is essential for mandatory testing, to assure that the person is qualified to practice in his/her field. Secondary and undergraduate education focuses on developing intellectually well-rounded persons, by requiring courses in different content areas. Languages and other areas of the humanities are studied mainly for the purpose of intellectual discipline and development, or to study foreign language literature for intellectual development, rather than primarily for achieving fluency and communicative competence.

2.1.2 Progressive

This view developed out of the ideas of John Dewey; stresses an experiential, problem-solving approach to learning. It emphasizes the experience of learner in determining

1 Descriptions adapted from:
problem areas and solutions to be considered. Learning is to be practical and pragmatic – to learn by actually doing, and learning to achieve a practical, usable skill.

This may be somewhat similar to the liberal approach, but with more emphasis on general practical benefits and hands-on learning. For example, in language learning, progressive teachers would focus more on actual language proficiency and communication skills, including more meaningful language practice in the classroom environment. In science, technology, or vocational areas, teaching would emphasize learning through problem-solving processes; students identify problems and work out solutions.

2.1.3 Behaviorist

This emphasizes the importance of the environment in shaping desired behavior. Behaviorism has contributed to the development of systematic instructional design models and emphasizes accountability, discipline, behavior management, and positive reinforcement.

This places strong emphasis on drilling, repetition, and dictation, e.g., the infamous “drill and kill” approach in language education, or rote memorization of large quantities of factual content, and recall on traditional exams. Learning (including language learning or learning verbal skills) are viewed as behavioral tasks and skills to be learned, and hence, a stimulus-response basis for learning language forms – emphasizing learning forms and achieving accuracy, rather than conceptual learning (or rather than practical communicative competence in language learning). Also, it values behavioral management and the use of positive reinforcement in the classroom.

2.1.4 Humanistic

This approach is based on the assumption that human nature is essentially positive and that each person possesses great potential; places emphasis on personal growth, personal autonomy, self-confidence, self-esteem, and self-direction in the learning process. The teacher serves as a facilitator, rather than as a “master” who serves to impart his/her expertise to the students.

Classroom activities would emphasize group work to enhance participatory learning and positive learning experiences for students. Teaching is to be done in a way that promotes self-esteem and the individual’s potential and self-discovery, e.g., through group activities. Classrooms should be student-centered, rather than teacher-centered, but students learn interactively with each other and the teacher. Students may even have a say in what topics will be covered or what they want to learn in a course. Learning language and culture related subjects is for better understanding among cultures.

2.1.5 Radical

This stresses the role of education as a means of bringing about major social change; education is used to combat social, political, and economic oppression within society.

For example, one would use such an approach for empowering immigrants to be able to use new language skills to get jobs, improve their position in the workplace and in society, organize unions, and be politically active; developing awareness of social injustice in the world, e.g., from political literature in the target language. Forums, workshops, group activities, and self-instructional forms of learning are used to increase students’ awareness of issues, and empower them to bring about change (e.g., social change, political change, or positive change in their field).

Note: One need not accept the very optimistic view of human nature in the early or pristine forms of humanistic psychology and education to have an essentially (educationally) humanistic belief in the value and worth of students, their potential, and their needs. One should also not confuse this use of ‘humanistic’ with other uses and meanings of the word in political, religious or literary contexts, e.g., as an adjective pertaining to humanities.
2.2 Understanding the terms: Further work

Many who take the PAEI find one or two dominant philosophical orientations. However, some people find themselves scoring more or less equally strong in three categories. Unless there is a logically consistent combination (e.g., a radical-humanist combination), you may need to examine why your orientation is so diverse, to make sure that it is not lead to inconsistencies. Some may find no dominant category at all—no distinctive trend, scoring more or less the same in all categories.

If you have three or strong categories, or no clear trend, it could be due to the following reasons.

- Your philosophy may have inconsistencies, e.g., due to very different influences and values developed from your educational or academic past.
- Your philosophy may be in flux—undergoing a process of change. This could be good, and you could introspect to work out from what and into what it has been changing.
- You may be an eclectic—a person who likes to pick and choose among philosophies—especially if you came out equally strong in many different categories.

It is possible to be eclectic, picking from multiple (but probably not all) philosophical orientations. However, it should be the right kind of eclecticism. Pedagogical eclecticism could come in several forms: (1) one based simply on what works—a pragmatic approach; (2) an arbitrary eclecticism, perhaps due to being in flux, or due to significant inconsistencies in teaching practice and teaching views; or (3) a principled eclecticism.

Naturally, an arbitrary eclecticism will lead to inconsistency in teaching practice. A pragmatic eclecticism may sound good at first, but it can also lead to inconsistency in teaching, as such a teacher may not be able to discern what works in what particular contexts or situations, or why they work. A principled eclectic should draw from several philosophical orientations for valid reasons, and build a consistent philosophy. For example, there should be clear, logical, well-considered reasons—good and practical criteria—for choosing to borrow certain elements from, say, the liberal, humanistic, progressive, and even radical approaches.

Now that you have done the PAEI, reflect on the following.

1. Think about how well you agree with the PAEI results. If not, why?
2. Are there inconsistencies in your beliefs? Why might there be such inconsistencies?
3. Are there beliefs that are at odds with your students’ needs? (Especially if you have strong behaviorist tendencies)
4. Do you find yourself disagreeing with your underlying operational philosophy? Are there inconsistencies between your espoused and operational philosophy? Would you prefer to operate according to a different kind of philosophy? (E.g., you find that you are a behaviorist, but would rather be a humanist) What are the reasons for your reactions (e.g., in terms of personal philosophical views, your teaching or career goals...)?
5. Introspection: Consider why you hold to those particular philosophies and beliefs. Look back at specific questions where your answers correlate with your general philosophical orientation. Why do you hold those beliefs? E.g., were they adopted from your own past teachers and past learning experiences?
6. Have a colleague observe your teaching and ask for feedback as to how his/her observations match your teaching philosophy and your perceptions of your teaching philosophy.

7. Consider whether your teaching philosophy has changed over the years. If you can identify such changes, were they due to personal and professional growth from teaching experience? Why did your attitudes change?

8. In the future, take this survey again and see if your teaching philosophy changes. If so, think about why your attitudes have changed.

Look at several key items from the questionnaire—those that seem particularly important or interesting. Introspect about them. Then in your own words, write a few sentences or paragraphs explaining those beliefs, and how they affect your teaching.

Introspecting on these points can lead to valuable discussion points for your teaching philosophy statement. However, in writing the teaching philosophy statement [TPS], do so in your own words, and avoid using some of this terminology (unless you are in an education department), to avoid sounding jargon-filled or pedantic. Most readers of your teaching philosophy statement may not know this educational terminology, so rephrase it in a way that clearly communicates to readers in your field.

2.3 Using your PAEI results

You can reflect on some key PAEI items, and start to draft part of your teaching philosophy statement [TPS]. For example, if certain items from the PAEI resonate with you, then put the ideas into your own words, expand on them, and incorporate them into your teaching philosophy statement, along with explanation and examples. E.g.,

People learn best: When the new knowledge is presented from a problem-solving approach.

The primary purpose of education is: To develop conceptual or theoretical understanding.

This might yield a section of your statement like the following example. Of course, this should be in your own words.
Educational psychology example

To be successful practitioners in the field, a deep understanding of basic concepts of educational theory and its practical applications to classroom teaching are necessary. Thus, lectures and class discussions in my introductory courses focus on these core concepts. When we discuss key scholars and figures in education and psychology, factual details like dates and other historical data are secondary; instead, I focus on their lasting contributions. Even details of their theories that might be discussed at length in other courses are glossed over if they are no longer relevant or applicable; e.g., many aspects of Freudian and behavioristic psychology are given short shrift in favor of more lasting contributions of others. Specific examples of application to teaching are discussed and worked out. Then students are given group problem-solving activities, in which they must work out potential applications of educational theories (such as ideas regarding pragmatic and learner-centered teaching) to specific teaching situations. For example, students are asked to work out examples of how Csíkszentmihályi’s concept of psychological flow could be applied to making for engaging classroom experiences, in both lecture-based and hands-on activities; or they are asked to apply personal attribution theories to dealing with specific case studies of troubled, demotivated students. By doing so, my students develop a deeper understanding of the concepts and theories of the course, and how they can be very practical and applicable to specific real-life situations, through problem-solving group exercises. Group work is regularly used, because it promotes a deeper understanding of the concepts as they learn from each other, and by doing so, they often experience some of the concepts that they are trying to apply. For example, some groups experience some degree of psychological flow as they become caught up in the process of working out applications of flow, attribution theories, and other concepts. During the wrap-up time at the end of the group activities, I am able to point out, or have students identify, how they themselves experienced some of these psychological dynamics in their group problem-solving processes.

This emphasis on conceptual hands-on learning even extends to my research methodology course. The course consists of three components: general research concepts, qualitative methods, and quantitative methods. In each section, I move from giving specific examples to having students work in groups, in which they discuss research scenarios and application of the concepts to research situations. In discussing statistics, I distill statistical methods to the most basic concepts, including comparisons and similarities among different statistical models. Very little math is used, except for x-y plot graphs, and simple algebraic models, which I use to explain the similarities and differences among various techniques. The basic model equation of \(y = x_1 + x_2 \ldots \) can help explain different variable types, and basic tools such as t-tests, ANOVAs, regression, logistic regression, \(\chi^2 \) tests, factor analysis, and hierarchical linear modeling. Thus, we are able to focus on the conceptual bases of these techniques and the types of research questions that the different techniques can be applied to.
Your academic worldview

Examining your worldview, and connecting teaching to your teaching.

Each discipline has its own worldview, or paradigm as Thomas Kuhn termed it (Kuhn, 1962). This consists of the theoretical view that you work in, as well as other philosophical assumptions that come with it, which altogether form your view of your “world”—how you and your colleagues view your discipline. It may be helpful to introspect about some of these questions, as these constitute basic assumptions which are natural to you, perhaps assumptions that you have not consciously or explicitly thought about. Such tacit assumptions may be difficult for students to grasp, as they are novices to the field. You may want to consider this conceptual gap between you and your students, how you convey these principles to your students, and how to bridge this conceptual gap in your teaching.

For example, if you are a social scientist who values quantitative research, you have certain scientific and empirical assumptions and beliefs about the field, about the goals of research in the field, and about how one goes about doing research. If you have students from humanities or qualitative research backgrounds, they may find it difficult to understand your course, because their way of thinking (worldview) is quite different. Their idea of what ‘empirical research’ means will be different from yours, and the rigid scientific assumptions and methodologies of your field may be alien to them. You will have to consider how you as a teacher can bridge this gap.

3.1 Basic assumptions and values

What are the basic assumptions of your field, and in your specialization? These assumptions form the academic worldview or paradigm of your field. These assumptions (goals, values, etc.) include the following.

1. How would you explain your field and what you study to an outsider, a non-specialist?
2. What does your field consist of? What kinds of things do you think about?
3. What ideas and topics are important to your field? What questions are important? What kinds of questions or topics are not important?
4. What kinds of questions and goals drive the research and scholarship in your field? What are the ultimate goals of your field—ultimately, what do you seek to know or understand?
5. What are important beliefs that guide the work in your field? E.g., beliefs about how things should be done, guiding ethical principles, etc.
6. What are the important models or theories in the field, and what questions are they designed to address? Why are these issues considered important?
7. What are important aspects of the history of the field—important milestones, important historical developments, important influential figures in the field? How do they affect the field today, and how you view your field?

3.2 Basic assumptions: Knowledge

The paradigm or field has its own understanding of what constitutes knowledge in the field, e.g., the kind of knowledge that one seeks as a researcher in the field, and how one gains new knowledge.

1. How do people in your field think of “truth” in the field? Do you seek some kind of objective truth, as the driving force of your field’s research? Or is it more subjective or less absolute?
2. What is required for an idea, model, hypothesis, or theory to be accepted in the field?
3. How does one make new discoveries in the field? How does one extend the state of knowledge in the field? E.g., what constitutes research in the field?
4. How does one effectively communicate ideas, proposals, or research findings to others? How does one argue for one’s ideas?
5. How does one apply or make use of knowledge in the field? How is it supposed to contribute to society?
6. As a result, how does one approach learning in the field? How do you communicate these ideas to students?

As a result, what are the basic means of doing research? E.g., is research strictly empirical (observation and confirmation), or more observational (without having to absolutely confirm it) or subjective? In other words, is research qualitative, quantitative, theoretical, or some mixture thereof?

Qualitative: observational and descriptive research; sometimes interpretive and evaluative

Quantitative: empirical observation or hypothesis testing, with statistical or scientific validation / confirmation

Theoretical: research based on intuitive, subjective, or introspective ideas or knowledge, or on logical argumentation —not necessarily empirical

What then does this mean for the kind of research that one does in the field? What kind of evidence, proof, support, validation, or confirmation does one use to advance arguments, claims, hypotheses, etc.? When writing up research or doing written assignments, what kind of support does one need to provide? For example, would one or more of the following be invoked:

- statistical data
- experimental data
- ethnographic data – based on observations and descriptions (e.g., of animal behavior, or of human social interactions)
- other observational data
- mathematical proof
- examples or anecdotes
- historical evidence
- historical narratives; historical background of an issue
- forensic evidence (i.e., by means of legal argumentation)
- theoretical analysis
- logical argumentation
- first-hand or eyewitness accounts
- inferences; “best guess” or “optimal choice” based logic
- metaphorical or analogy based arguments
- quotations
- other forms of evidence

A good way to think about these issues is to try to explain your field and your research to someone who does not know your field. How would you convince the person that your research area is worthwhile and important? For example, why is your research deserving of government research funds from taxpayers like your listener - how does the research of you and your colleagues contribute to society? Why should someone else care about what people like you do?
3.3 Implications for teaching

Having reflected on your philosophy, consider which aspects of the worldview, ways of thinking, and type of research would be most difficult for your students.

- Which core ideas, skills, or ways of thinking are most fundamental to the field, which students need to grasp?
- Which of these are most difficult or alien to new students in the field? What kinds of difficulties do they have here? Why do they have difficulty here?
- How do you try to convey these ways of thinking to students?

For example, if teaching statistics, students will encounter some basic concepts that are not very intuitive, but that are foundational to statistics. Such concepts are part of the world and ways of thinking of statisticians. How can you see that students are having difficulty with these? How can you make things easier for them to understand? For example, how is the way a statistician thinks differently from how others think regarding numbers and evidence? How can you communicate that to students? How do you help them understand and conceptualize such ideas? How successful have you been at conveying such ideas, and/or how are you improving in this aspect of your teaching?

For example, you might reflect on this, and include a brief section in your teaching philosophy statement like the following example from linguistics.

In my first year of teaching, I found that students had trouble grasping the kind of logical argumentation based on linguistic examples, which is standard in the field. So in response, I developed a series of several lessons that involved critiquing good and bad examples of logical argumentation, and good and bad use of linguistic data or samples. I then had them practice writing their own argumentation papers, using classic problems (which they would not have seen) to create their own mock argumentation papers, replicating those classic problems (e.g., the syntax of existential ‘there’ sentences), followed by peer editing and critiquing of their papers, followed by comparison of their papers with actual published papers dealing with the same problems. After these exercises, students were much more adept at producing meaningful arguments and analytical papers in my course. The expectations and type of end product was quite foreign to them at first, so they needed guided, step-by-step instruction in this; otherwise, they would be lost in the rest of the course.

Over the course of several semesters, I also realized that they were confused about some basic aspects of the field. Most of them had had courses in descriptive linguistics in college, but were not well prepared for the demands of graduate level linguistics, which is rather different in its theoretical orientation. Students, I found, were confused or unclear about the kinds of questions that drive our research, why these questions are important, or why we do the kind of research that we do as a result.

So I extended the introductory section of Linguistics 400 to deal with some of those basic issues in greater detail. So I talked about the history of syntactic and linguistic theory, examples of language data that drove the earlier development of the field and the kinds of questions that were asked, and thus, the kinds of questions that theoretical linguists are interested in today, and why. I also included a group problem-solving activity in which students are asked to consider different ways of attacking sample problems - how researchers with different assumptions would consider them - as a way of appreciating different approaches in the field, such as generative and cognitive approaches.
4 Self-efficacy

Self-efficacy is your sense of effectiveness and capability as a teacher. It consists of the following qualities, which affect how well you teach, and your students’ motivation. In your teaching philosophy statement, you may wish to discuss and evaluate these, including how you have been improving, and how you are trying to improve in these areas.

- **Your field expertise**: expertise and competency in your field, and the sense of competence in the field that you convey while teaching
- **Your pedagogical expertise**: your ability to understand your students’ knowledge state and their difficulties, and then to relate the material to them and help them to *meaningfully* learn concepts and skills
- **Your own motivation**: as a teacher, and as a scholar and researcher in the field
- **Your sense of self**: including: your self-confidence; your self-identity; the teaching persona or presence that you establish in the classroom; and your own sense of your teaching effectiveness.

Students, of course, expect an instructor who is knowledgeable in the field, and can give meaningful, insightful, clear answers to their questions. A good teacher, with experience, also develops pedagogical expertise, whereby s/he can (1) recognize what the students understand and what they don’t understand; (2) recognize what concepts or skills they will likely have difficulty with; and (3) provide clear explanations, exercises, and activities to help them understand clearly.

A teacher who is motivated about his/her teaching and his/her field, and who enjoys teaching, can help motivate the students. A teacher with a positive attitude and classroom persona (personality, attitude, character, etc.) can also encourage and motivate students. A teacher’s sense of identity includes how s/he feels about him/herself as a teacher and scholar, and how s/he evaluates the effectiveness of his/her teaching. The self-identity also includes what psychologists call the ideal self and the “ought-to” self. The ideal or future or potential self is your idea of what the kind of person that you want to be in the future, and the ”ought-to” self is the kind of person that you think you should be. As a teacher, this would mean the kind of teacher that you would like to become and the kind of teacher that you think that you should be.

For your TPS, you can think about the kind of teacher that you are (and how you’ve grown as a teacher so far), as well as the kind of teacher that you want to become, and what specifically you are doing to become that kind of person. For example, you can discuss your particular goals for improving your teaching, and what concrete, attainable steps you are taking to become that kind of teacher. This relates to the next consideration: Reflective practice as a teacher.

4.1 Reflective practice

Teachers who wish to develop themselves professionally engage in reflective practice—reflecting on their teaching and how to improve. Besides examining their teaching philosophy, they try to reflect on the teaching methods that they use and why they use them; and particularly, they reflect on how a particular lesson went, how well their teaching methods worked, how effective their lessons were, the reasons why, and how to improve. Some things that teachers might do for reflective practice and self-improvement include:

- Writing reflective critiques of particular lessons that you have done; after teaching a lesson, you reflect on and write about it, examining what went well, and what things could be improved.
- Keeping a journal about your teaching, like regular reflective critiques on particular lessons and on your teaching in general.
• Seeking feedback from students, in addition to the formal, university-administered course feedback.
• Having colleagues observe your classes and getting feedback from them.
• Comparing your use of different teaching methods (see below).

Teachers may engage in a sort of informal pedagogical experimentation—trying new methods and approaches, and comparing them with their standard lessons. For example, a teacher might try a new activity or type of lesson, and compare the results with her standard lesson for that particular course topic. If a teacher wants to engage in more serious reflection on her methods, she might write up a reflective commentary for comparing her standard and more experimental methods and some tangible results (e.g., comparing homework or test results), which is sometimes called “action research”.

If you practice pedagogical self-improvement techniques like these - those that would fall under the rubric of reflective practice—feel free to write about it in your TPS.

Here are some further questions to consider.
1. What motivates you to teach?
2. How do you try to motivate your students in your classes?
3. What do you expect to accomplish in your teaching?
4. How do you know if you’ve taught effectively? What are your criteria for effective teaching?
5. How do your research and your field of study influence how you teach? How do your personal, educational, and academic background affect your teaching (e.g., how you were taught)?
6. How do you view your students and how do you interact with your students?
7. How do you think your students learn best?
8. Do you try to accommodate differences in students’ backgrounds (academic, socioeconomic, cultural, etc.) and learning styles? If so, how?
9. What principles guide how you evaluate and assess your students?
10. Conceptual learning. How do you focus on, and make sure that students focus on, learning key concepts and skills - rather than merely memorizing facts?
11. Student-centered. How do you make sure you focus on the students’ needs? How do you make sure that [1] students do not just passively listen to lectures (and memorize facts), but are actively engaged in learning; and [2] that the class is not just an information dump, but an opportunity to learn more interactively? E.g., do you use group activities or projects, problem-based learning, problem-solving activities, or other means of focusing on student learning, and varying the class format?
12. Avoiding overkill. How do you select what to focus on in teaching? How do you select what to focus on and what to leave out? How do you avoid overfilling the syllabus with too many contents and details?

4.2 Self-efficacy inventories

Rate yourself on the following criteria by circling the most appropriate number on a scale of 1-5 (1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree). This is an informal scale for your own reflection, so no evaluation criteria are available; this is simply intended to give you a very rough idea of your sense of efficacy. These include general professional efficacy\(^3\), teaching efficacy, and EMC-related efficacy (English mediated courses or English-mediated instruction).

\(^3\)These general efficacy criteria are from:
General professional efficacy

1. I can always manage to solve difficult problems if I try hard enough. 1 2 3 4 5
2. If someone opposes me, I can find the means and ways to get what I want. 1 2 3 4 5
3. It is easy for me to stick to my aims and accomplish my goals. 1 2 3 4 5
4. I am confident that I could deal efficiently with unexpected events. 1 2 3 4 5
5. Thanks to my resourcefulness, I know how to handle unforeseen situations. 1 2 3 4 5
6. I can solve most problems if I invest the necessary effort. 1 2 3 4 5
7. I can remain calm when facing difficulties because I can rely on my coping abilities. 1 2 3 4 5
8. When I am confronted with a problem, I can usually find several solutions. 1 2 3 4 5
9. If I am in trouble, I can usually think of a solution. 1 2 3 4 5
10. I can usually handle whatever comes my way. 1 2 3 4 5

General teaching efficacy

1. I have confidence in my experience and knowledge in my subject area(s). 1 2 3 4 5
2. I have a clear teaching philosophy related to my domain/majors. 1 2 3 4 5
3. I am conscious of the learning objectives of the courses that I teach. 1 2 3 4 5
4. I understand the content and scope of the major areas I teach. 1 2 3 4 5
5. I can use teaching strategies appropriate for the learning objectives of my courses. 1 2 3 4 5
6. I can establish learning objectives by considering my students’ (existing) level of knowledge. 1 2 3 4 5
7. I can prepare course materials without spending too much time. 1 2 3 4 5

EMC-related teaching efficacy

1. I can effectively teach my subject area in English. 1 2 3 4 5
2. I can clearly communicate my ideas to my students in English. 1 2 3 4 5
3. I can answer my students’ questions in English, whether they ask them either in English or Korean. 1 2 3 4 5
4. I can give my students clear instructions in English regarding homework and assignments. 1 2 3 4 5
5. I can give clear explanations and feedback in English to my students on their assignments, tests, and exams. 1 2 3 4 5
6. I can clearly specify in English the learning goals that I expect my students to attain. 1 2 3 4 5
7. I can create effective instructional materials (e.g., PowerPoint slides) in English. 1 2 3 4 5
8. I can give clear explanations in English of material in the class textbook. 1 2 3 4 5
9. I can facilitate class discussions in English. 1 2 3 4 5
10. I can give my EMC students confidence in their ability to do well in the course. 1 2 3 4 5
5 Writing your teaching philosophy statement

First, introspect on...

1. Your PAEI results, reactions, and follow-up.
2. Items from the PAEI that might be applicable to you.
3. Implications of your research paradigm and disciplinary worldview for your teaching
4. Your teaching self-efficacy and personal / professional development.

5.1 Criteria and guidelines

A good TPS should exhibit some of the following characteristics.

1. Reflective practice. A TPS should show that a teacher tries to improve his/her teaching, and thinks consciously and critically about his/her teaching practice.

2. It should show that a person cares about his/her teaching, and does not view teaching as a burden. One should demonstrate clear goals in teaching, as well as clear, specific, practical, attainable means of achieving them.

3. It should show that a teacher cares about students as people, and cares about their learning; ideally, it shows that a person’s teaching is student-centered and not too teacher-centered.

4. It should be clear, concise, and well written; it should be proofread; and it should be free of typographical mistakes, wording errors, grammar mistakes, or other problems.

5. It should be in an appropriate, professional tone (e.g., not making exaggerated claims about your teaching or your philosophy). It should be free of (1) jargon, platitudes, exaggeration, overly positive claims, fluffy-sounding statements, or cliché-like phrasing; (2) any trivial or mundane statements; or (3) any overly subjective, overly personal, or unprofessional comments.

6. Also, it should clearly be your own work, entirely your own writing and in your own words.

For example, rather than describing yourself as a humanist-progressive (such jargon would alienate or befuddle committee members), explain your views in your own words, with examples. Rather than stating that you use problem-based learning, explain how you use interactive problem-solving activities, why you do so, and the observable benefits for students that result from it.

The following can be a useful rubric for evaluating your TPS.\(^1\)

\(^1\)Adapted from: Rubric for Statements of Teaching Philosophy developed by Matt Kaplan, Chris O’Neal, Debbie Meizlish, Rosario Carillo, and Diana Kardia. Center for Research on Learning and Teaching (CRLT), University of Michigan
<table>
<thead>
<tr>
<th>Categories</th>
<th>Excellent</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning goals:</td>
<td>Clearly articulated and specific goals, going beyond mere factual knowledge, including skills, attitudes, career goals, etc. Goals are relevant to the field. They are concise, not exhaustive.</td>
<td>Goals are articulated but may be too broad or not specific to the discipline. Goals focus on basic knowledge, ignoring skills acquisition and affective change.</td>
<td>Articulation of goals is unfocused, incomplete, or missing.</td>
</tr>
<tr>
<td>Realizing goals (teaching methods):</td>
<td>Specific and thoughtful discussion, with details and rationale for teaching methods. Methods are appropriate for and clearly connected to specific goals; specific examples of methods used in teaching.</td>
<td>Description of methods not clearly connected to goals, or not well developed (e.g., just a list of what is done in the classroom). Methods are described generically, and without specific examples.</td>
<td>Methods and goals are not well articulated, or the discussion is basic and unreflective.</td>
</tr>
<tr>
<td>Assessment:</td>
<td>Specific examples of assessment tools are clearly described, and are clearly aligned with teaching goals and methods. Assessments reinforce the priorities and context of the field.</td>
<td>Assessments are described, but not connected to teaching goals and methods. Description is too general and lacking clear rationale. No clear connection with the field’s priorities.</td>
<td>Assessment of goals is not articulated or mentioned only in passing.</td>
</tr>
<tr>
<td>Inclusive learning environment:</td>
<td>Considers students’ backgrounds, gender issues, or learning styles, as relevant.</td>
<td>Inclusive teaching is addressed in a manner that is cursory, or isolated from and unrelated to the rest of the philosophy.</td>
<td>Not addressed or done so in an awkward manner; no connection to teaching practices.</td>
</tr>
<tr>
<td>Structure, expression, and language</td>
<td>Well organized statement with good logical flow; engages the reader; Jargon and technical terms are generally avoided and teaching terms (e.g., critical thinking) are clearly explained and exemplified. No grammatical or spelling errors.</td>
<td>Unclear organization and flow, or weak structure that does not resonate within the disciplinary context; some jargon.</td>
<td>Overall structure lacking; merely a set of disconnected statements on teaching; too much jargon, without specific definitions or examples. Needs much revision.</td>
</tr>
</tbody>
</table>
5.2 General structure

You will want to address at least some of the following:

1. Learning in the field: How does learning happen in the field? In your classroom? What motivates me to learn and teach?

2. Values and worldview: What is important to you as a person in your field? What concepts or ways of thinking are unique to your field, which might students struggle with? How do you help them?

3. Specific goals for student learning: What specifically do you want students to gain from your courses, and why? What specific skills and knowledge do they need to learn? How and why are these goals important for them, and/or for you? What constitutes successful learning?

4. Teaching methods: Classroom activities and teaching techniques, and how they relate to your goals (e.g., lecture / discussion, seminar; scaffolding techniques; problem-based learning, active learning, team based learning, group activities...). How do you promote deeper, more conceptual learning (rather than just memorizing factual knowledge). Give specific examples and explanations from your teaching.

5. Assessment: Types of exams, homework, and class activities to check their learning. How do these contribute to your teaching and learning goals?

6. Learning environment, including how you interact with students, classroom style and tone, considering students’ backgrounds, differences, etc.

7. Professional growth: How you try to develop yourself professionally, e.g., in content knowledge, efficacy, interpersonal skills, meeting students’ needs? How do you seek to reflect on and improve your teaching? How have you overcome obstacles as a teacher? What specifically do you plan to do to improve yourself?

5.3 Examples

The next section presents a few sample teaching philosophy statements. The first example is a poor one, showing what not to do. The others are generally good, but occasionally sound cliché-like.5

5.3.1 Teaching philosophy - Poor example

I believe students are motivated to learn when they understand why they are learning and have a clear sense of how they and their community will benefit from what they are learning. To that end, I seek to communicate in my lectures, seminars and one-on-one meetings with students not only the information they are responsible for learning, but also the relevance of that information.

I find this approach gets students excited about their learning, sparking their enthusiasm and inspiring them to succeed to the best of their ability. Rather than approaching an assignment with a sense of obligation, they see it as a process of self-discovery, an opportunity to learn not only the material I want them to learn, but something about who they are, what they believe, and what they can achieve when they put their mind to it.

This approach works because not only do I feel my students’ energy and enthusiasm in the classroom – I feel my own. Rather than getting bogged down in a cycle of

5Most of these are from the University of Michigan, or the McDougal Graduate Teaching Center of Yale University.
drudgery, we grow together as individuals, becoming a small community of co-learners.

In more practical terms, I approach a new semester by planning the course carefully prior to the beginning of the semester, outlining clearly to students in the first class what they can expect of me each week, and what I expect of them. I also outline at the beginning of each class what we will cover, and how our time together will be structured. And at the end of each class I give them an idea of what we will be covering in the next class. I find this approach enables the course to flow smoothly, maximizing productivity.

During class, I urge students to be active participants in their own learning, encouraging them to ask questions and engage in small group discussion. This facilitates the integration of new ideas, with the exchange of perspectives and viewpoints deepening understanding. And I interact one-on-one with students as much as possible, to better understand exactly who they are – their concerns, interests and motivations. I find these simple techniques make the classroom a vibrant, positive, respectful space, where students feel free to speak their mind, test ideas, and grow as individuals.

In facilitating that experience, I also grow, and I experience immense satisfaction when I see the quality of student work improve and their enthusiasm increase over the course of a semester. When students tell me they appreciate the helpful and supportive environment I create in the classroom, I am truly gratified.

As I develop as a teacher I would like to develop stronger relationships with my students, to the point where they keep in touch with me even after the course is complete. I am still in touch with a number of my university professors, and value their friendship, as I believe they value mine.

5.3.2 Teaching philosophy: Communication Studies

Media studies is a broad and multifaceted field marked by opposing critical and entertainment values, yet thoroughly encapsulated in daily life. Many students come to the field expecting it to either be a stepping-stone to professional experience or a “fun” class geared towards discussing the latest in popular culture and technology. With this in mind, I have three main objectives for their learning experiences: 1) to facilitate the appreciation for complex, big-picture issues inherent in processes of mediated communication, 2) to provide fundamental knowledge and tools applicable to students’ academic and future careers in media-related fields, and 3) to enhance critical self-awareness and understanding of the media and their impact on individuals and the world at large. One way I actualize these objectives is by creating a dedicated and engaged learning environment in which I take an active role in facilitating my students’ learning and engagement with the media. My pedagogy stems from sensitivity to students’ media interests and their skepticism both towards the media and critics who take them to task. My overarching goal for students is to think critically about their engagement with the media and understand the subsequent effects this engagement has on our individual, social, and cultural value systems.

I believe that students do not come to class as blank slates and often bring with them preconceived notions about the media. These preconceived notions may manifest into a lack of appreciation and understanding for the more historical and theoretical aspects of communication studies and research. Moreover, they may find it difficult to reconcile media effects and communication theory with the more professional orientations of their future careers. As a teacher and a researcher in media studies, it is important for me to acknowledge and disabuse them of the notion that the two aspects of the field are mutually exclusive. Therefore, one of my goals is to help students see the relevance of
academic concepts to their own lives and to the field overall. In order for me to do this, and a favorite tool among my students, is to provide current media examples that help facilitate the deconstruction of complex concepts and theories, as well as make them more memorable and applicable to the students’ lives.

For example, one class assignment I asked students to create was an ideological analysis of a television text using Stuart Hall’s “Encoding/Decoding” reading classifications. To make my objectives for the assignment more transparent, I guided the students in an in-class evaluation of an episode of the sitcom Everybody Hates Chris. The screening, in conjunction with the course readings and informative group discussion, helped students further recognize and identify the multiple “readings” that one television episode could involve. In another course designed to examine the myriad effects that the media can have on our individual lives, I used a clip from the reality show Beauty and the Geek to emphasize the media’s impact on body image. In lieu of the more traditional body image examples (i.e., female body consciousness), this clip emphasized that women are not the only ones who can be body conscious. The clip showed men confused and at odds with their appearance and how it fails to live up to more masculine (and societal) standards.

Furthermore, I frequently use clips from YouTube and Hulu as both a discussion tool and an example of the changing digital media landscape. I believe that in using current and/or popular media, students have been better able to grasp difficult concepts, remember the examples, and subsequently think about and apply abstract concepts more concretely. My own research draws heavily on pop culture texts, which keeps me immersed in current trends and relatable to many of my students and their own media interests. I believe that when students recognize their own values and interests being stimulated, they may feel a greater sense of commitment and ownership in the class, and thus more engaged in the learning process.

I also believe that students learn when they are exposed to different ways of understanding the course material and objectives. Reading, elaboration through lectures, student-led discussion of the material, and a presentation of diverse visual media all function as tools to help give every type of learner several ways to “get it.” I frequently use online collaborative learning sites (such as Course Tools or Blackboard) to facilitate classroom discussion. I also create PowerPoint slides that are easily accessible to students, as well as a source of reference material for them throughout the semester. Furthermore, I encourage and invite students to utilize their life experiences when engaging with the material and leave ten minutes in each class session for a “watercooler” discussion – even if that means discussing pop star Britney Spears and the trials of celebrity. The watercooler discussion paves the way for enlightened engagement and interactivity among the students, particularly when they have to interpret larger course concepts.

I prefer to use multiple avenues of student assessment including examinations, research papers, group projects, and short in-class writing assignments. While I do believe that the testing process is important to make sure that students comprehend the material, questions that simply ask students to recall facts without assessing them critically is not helpful. I strive to create short answer/essay test items that force students to analyze, synthesize, evaluate, and apply concepts learned throughout the course. For example, after viewing Color Adjustment and reading parts of Enlightened Racism and trade press reviews of The Cosby Show, one exam question asked students to synthesize and discuss the complexities (both positive and negative) surrounding the representation of African-Americans on television. Moreover, I take to heart that writing and communication skills are the basis of any good scholarship and future professional necessities. I place particular attention on my students’ ability to communicate their ideas effectively and efficiently through writing. Thus, my paper assignments offer students an opportu-
nity to engross themselves in the material, formulate their own opinions, think critically and relationally about course concepts and theories, and, in the end, consolidate the cumulative aspects of the course.

The connection and energy established between my students and me is a powerful teaching technique that I utilize in creating an optimal learning experience. I view my role as the instructor as not only a source of knowledge, but also a source of support and an avenue for other resources. Students can expect that I am approachable, available to answer questions, and genuinely invested in their academic success. I strive to be student-focused, competent, flexible, and aware of uniqueness amongst my students. If I can help students see the relevance and the value in what they learn in class, the desire to learn and to be challenged would not be something forced upon them. Rather, as I have found through my teaching experiences, by modeling and instilling students with a sophisticated understanding of media processes and content, they can apply these to most any (media-related) circumstances. Once students are engaged and excited about the material, they will then begin to proactively ask questions, think critically, and search for connections and relevance on their own in the future.

5.3.3 Teaching philosophy: Geological Sciences

Global warming and climate change, ever-dwindling natural resources, energy, health affects linked to air and water pollution – these issues, now more than ever, have taken center stage in the public sphere, and geology departments find themselves uniquely positioned to equip our future scientists with the tools they will need to meet these challenges. A quick survey of department names finds “geology” being replaced or supplemented by words such as “planetary, atmospheric, environmental, mineral, and Earth sciences”. These changes reflect the increasingly interdisciplinary nature of the field, and our faculty are responding to this opportunity. I can make an impression on a student when I can explain how the chemical reactions that erode mountain ranges can be utilized by the material scientist who is trying to harness similar reactions in fuel cells to generate energy; or show how the understanding of mineral-organic interface that is so vital to the formation of the Great Barrier Reef is also vital to the life scientist who is researching the regrowth of injured bones; or explain to the nuclear engineer who is looking for new materials to safely immobilize nuclear waste to start by looking at grains of sand—with compositions of minerals that have proven to be resistant to weathering over the last billion years. The more that you can show the broad applicability of a concept across different disciplines the more easily that concept can become rooted in the mind of our students, and the more seamless it will be for these scientists to move from discipline to discipline to deal with our challenges.

Our students are the future paleontologists, oceanographers, economic geologists, climate scientists, geophysicists, environmental engineers, to name a few. Thus, we face the challenge of teaching the fundamentals in a way that they can be applied across extremely diverse disciplines. A goal in this regard is to nurture a student’s innate curiosity about the natural world. No matter the course name, I start my classes with students making observations in their own backyard, or taking note of the geology they pass on their way to class in the morning. What kind of rocks and soils do you see? What landscapes surround you? What features do you see on the horizon? Then we begin to ask the curious questions: What factors have shaped the landscape? How has the geology influenced the people, the economy, and the history or an area? How does the landscape fit into the geology of the larger region? Introductory surveys and questionnaires (along with student assessment surveys throughout the course) are integral to my being able to tailor a course to the diverse interests and needs of my students and allow me to...
make connections between the abstract theories that I scrawl on the chalkboard and the realities of their lives outside of the classroom. Whenever possible, we take field trips to a site for discussion, and when this is not feasible, we use tools such as Google Earth to stimulate conversation.

As geoscientists we attempt to explain processes that occur over a range of pressure, time and space scales that many students struggle to wrap their brains around. To this end, I believe strongly in the use of models and examples to help students in class to visualize everything from crystal structures to complex fold and fault structures. Whenever resources allow, the use of computer modeling programs such as CrystalMaker to build and manipulate crystal structures or PHREEQC for aqueous geochemical calculations can be invaluable tools in the geoscience classroom.

I believe strongly in the method of learning by teaching, and I regularly incorporate opportunities for students to teach their fellow students in discussion or lab sections. A student has truly learned a subject when they can teach it to their peer. This is why research projects that culminate in oral presentations or class poster presentations are an integral part of any syllabus I develop for a class. In order for a project to be meaningful it has to be developed throughout the entirety of a class and not just in the last few weeks so that the students ideas about their topic can evolve as their knowledge about the subject evolves. The ultimate goal is to allow students to explore their own interests in the context of the class as well as giving them yet another opportunity to engage their peers.

The teachers that have most affected the trajectory of my life are those that can make the strongest connections between the abstract theories scrawled out on the chalkboard and the realities of life and nature outside the classroom walls. This is especially true in the geosciences where we attempt to explain processes that occur over a range of pressure, time and space scales that many students struggle to wrap their brains around. This difficult task can be made easier by showing how an understanding of the natural processes that shape the surface of the earth are important to everyone, not just the dusty geologist in the field measuring dip and strike.

5.3.4 Teaching philosophy: Mathematics

To teach mathematics is to guide a discovery. Learning mathematics is essentially discovering mathematical ideas, such as geometric intuition, simplification and use of symmetry. Mathematical ideas take place in a mathematician’s mind, and thus nobody can perfectly instill these on the mind of another. Nonetheless, an instructor can facilitate the learning process, helping a student recreate in his or her mind the beautiful idea presented in the class. In time, I see that my students come to express these ideas themselves in proper forms of logical statements, such as axioms, theorems, proofs, and computations.

A crucial role of an instructor is to cultivate an atmosphere in the class which allows this collective process of discovery. After making administrative announcements, I begin each class by describing the day’s “Learning Objectives”. For example, if a class is on normal distribution in probability, I clearly write the topics such as definition, expectation, standard deviation and approximation of binomial distribution. Then I briefly recall definitions and theorems under the heading “Recall”. Usually, this includes the material from the beginning of the chapter. Students are often surprised to learn how concise the material may be summarized in such a systematic way. The next part of the class is “Motivation”. In this part, I present a simple but intellectually stimulating

6Author: Kim Sang-hyun, from http://mathsci.kaist.ac.kr
question, which is easy to understand but not so straightforward to answer. In the case
of normal distribution, I would give a two-part question: the first part is to compute
the probability that at most 3 heads show up when 4 coins are tossed; the second part
is to compare it with the probability of having at most 300 heads when 400 coins are
tossed. The first part is answered using the techniques introduced in previous classes.
The content of the lecture then answers the second part of the question, as well as gen-
eralizing it to other types of events. This way, a new idea becomes a lot more intuitive
and straightforward generalization of previous material.

For the main part of a lecture, I state definitions and theorems in logically coherent
and concise sentences, which at first may be difficult for the students to fully understand.
Then I spend a considerable amount of time to help students to discover the ideas
behind those sentences. I always start from the very basic examples and build their
understanding to the level of the most general cases. Finally, I return to the original
definitions and theorems. The great difference in such an approach is that not only are
students capable of solving problems algorithmically and systematically, they now also
understand what it is that they are computing.

Class interaction is a key indicator measuring the success of each class. I main-
tain eye contact carefully, ask soft, qualitative questions that can be answered by most
students, and pause for any feedback. Whenever I get asked a question, I try to com-
mend the student for any original idea that the question implies, regardless of whether
the question makes mathematical sense or not. If the question is about the topic that
was just discussed, I rephrase the explanation with different sentences or examples. I
sometimes quote results from the previous lectures, but I never blindly assume that the
audience remembers them. Other than regular office hours, I contact students who have
a hard time with the course material or exams. I also highly value student-student in-
teraction, inside and outside of class. I strongly encourage students to group together
for homework and exam preparation. Critical thinking and true discovery can be fully
developed through discussion of the material that they are learning.

I have taught 15 courses over the past eight years at Yale University and at the
University of Texas at Austin. These include summer courses, multivariable calculus
for economics graduate students, number theory, probability and discrete mathematics.
Calculus classes varied from small (less than ten students) to large (more than a hun-
dred). For all these courses, my philosophy of teaching and the structure of a lecture
have always been consistent. To aid motivation and discovery of students, I find that
visualization is a very powerful tool. This applies to almost all parts of mathematics,
such as geometry, calculus and even number theory, not least because I am a geometric
topologist. In addition to color chalks and markers, I make great use of computer-aided
graphics softwares such as Mathematica both in class and in homework assignment.

In the Spring semester 2010, I will teach a graduate course, Topics in Geometric
Group Theory. Aimed at beginning graduate students, this course will discuss basic
notions of geometric group theory and eventually lead to the study of cube complexes.
In mathematics, even very familiar examples can be viewed with different perspectives
to effectively introduce new insights. For example, I plan to examine the infinite cyclic
group extensively in order to embark on discussion of Cayley graphs and quasi-isometries.
Advising and interacting with students in a Ph.D. or master’s program have been greatly
inspiring to me and often revealed leads to my research, not to mention theirs.

A good guide does not lift and carry the traveler. A good guide walks one foot
ahead, encouraging the traveler onwards and clearly pointing to the destination. Teach-
ing mathematics is not conveying an algorithm of solving problems. Rather, teaching
mathematics is about leading the students to discover marvelous ideas that the logical
statements of mathematics imply. To do that, the teacher must set specific goals for
each class, and help the students achieve attainable goals through well-organized lec-
ories. Learning a mathematical topic is complete only after the students recreates the ideas in the own mind and appreciates the meaningfulness of the topic.

5.3.5 Teaching Philosophy: Biomedical Engineering

Importance of having big picture in Engineering

It is critical for an engineer to have a sense of the big picture of the technology on which technological decision-making is based. In addition to basic, technical information, this big picture includes insight, communication skills, and decision-making skills. We have learned from history that many decisions related to technology were affected by non-technical facts. For example, before the space shuttle Challenger was launched, NASA engineers had technological expertise to diagnose the potential problem of the o-ring. However, they lacked clear insight into what impact the o-ring problem might have on the launched space shuttle. This lack of vision and compromised communication skills resulted in a failure to persuade the director to stop the launching of the shuttle. What mattered in this case were not the technical details themselves, but the insight and the communication skills affected on decision making.

Teaching method

My goal for student learning is to develop problem solving skills, analytic skills, and, ultimately, ability to think holistically in order to synthesize a creative solution and/or an insightful advice, and to deliver them successfully. To develop these skills, it is essential to get trained to think critically and actively. One good training method is to conduct an engineering design project. In conducting a design project, a student learns how to: (1) define and analyze a problem, (2) find and assess a solution, and (3) deliver this solution to end-users. When teaching design classes, in order to help students develop these skill sets, I have tried to encourage them to find solutions by themselves, instead of simply giving them my solutions.

One specific example of my teaching style (or rather coaching style), is the experience I had with a design project team who had built an electric circuit for their electrocardiogram (ECG) device that did not provide the expected output gain. The problem was that they had used too low value resistors. These low resistors, combined with the intrinsic resistance of the bread board they used, created a larger effective resistor value than expected. As a result, it came up with a different output gain. I essentially asked probing questions to make them aware of the things they need to consider. With discussion, they were able to isolate the problem and solve it. The beauty of design projects is that students can also develop the ability to work productively with others, acquire leadership skills, and learn to organize and use time effectively.

Assessment

I understand the goal of assessment in engineering education is not just to determine which student is more knowledgeable than others and give them a letter grade, but to motivate students to achieve their goals set in the class. To guide students to achieve these goals, I have learned that writing term papers, writing user manuals, and giving final project presentations is more effective than taking exams for design classes.

Creation of inclusive environment

A sense of concern and encouragement from the teacher can provide students with the confidence and desire to overcome obstacles during the learning process. Learning begins with communication with the instructor. The effectiveness of this communication largely depends on the interpersonal relationship between the student and the instructor.

22
Through the courses that I have taught, I learned that students who received timely
guidance and advice learned a lot faster than ones who did not get it. I also noted the
importance of the interpersonal relationship from my work experience in a company.

While working on my PhD in Biomedical Engineering, I was given an unusual op-
portunity to serve as CEO for a company in China where I discovered my passion for
interpersonal relationships. As the CEO of a food company, my job was to oversee all
aspects of the business: farming, distribution channels, quality control in the factory,
and executive decision-making. I became the CEO, succeeding my predecessor who sud-
denly fell ill. Because of the sudden change of leadership, there was significant turmoil
in the company during the initial phase of my term. I stepped in and led 200 employees,
many of whom had limited experience working with people from different backgrounds,
sometimes resulting in cultural misunderstandings.

I strove to build mutual, trusting relationships with my employees through interper-
sonal connections and immersion in Chinese language and culture. I also hosted one-
on-one meetings and participated in activities with employees to build strong teams.
Not only did I change the culture of our organization and increase positive relations, I
also achieved increased revenue of 25 % and doubled our manufacturing capacity. The
company also maintained a number one market share in Shanghai and Qingdao. These
achievements were founded on the interpersonal relationships. Of all these achievements,
the most valuable outcome was the meaningful relationships that I established with my
employees. My experience in China has prepared me for the kind of intercultural lead-
ership required in the teaching of diverse students.

5.3.6 Teaching philosophy: Psychology

As a teacher I strive to engage, challenge, and inspire growth in my students. It is my
belief that every student is capable of tasting the passion that I feel for psychology by
becoming collaborators in the exploration of psychological theory, research, and practice.
To engage my students in the study of psychology, I begin by crafting stories that draw
them into the thick of the learning experience. Behind every statistical technique, clinical
intervention, and theoretical argument is a vivid anecdote, and I believe that it is my job,
in part, to share these tales with my students. I prefer to teach through demonstrations:
by conducting mini-experiments and analyzing data in the classroom, by participating
in small group debates and role-plays, by observing and chronicling behaviors from “the
real world,” and by discussing clinical case studies. I aim to immerse my students in
the topics that I love. I believe that psychology, like a foreign language, is best learned
by immersion—in the context that led the researcher, teacher, or clinician to
ask her question about the human mind.

To challenge and be challenged by my students is my second goal. I begin with the
belief that every student possesses unique capabilities that can be shared with others
if given the appropriate supports. I challenge my students to share opinions with and
to mentor one another. I encourage brainstorming sessions, group projects, and group
presentations. It is my hope that students leave my classroom knowing what it means
to be a collaborator. I also expect to be challenged by my students—an expectation I
hope to communicate to the class early on. I encourage my students to ask questions,
and I am straightforward about not having all of the answers. When I become “stuck”
I seek the input of my colleagues, my books, and the endless array of resources that can
be found on the Internet. When I next return to the classroom, I share not only the
answer that I’ve found, but also the process I went through to discover it. Above all
else, I challenge my students to understand that I am open to their thoughts, eager to hear their opinions, and thrilled to learn with and through them.

Finally, I attempt to inspire growth in my students by giving them tools to take into other disciplines and into other domains of their life. Among these tools are a sense of curiosity, open-mindedness, and a thirst for knowledge. I would like my students to observe and begin to question the purpose and meaning of human thought, behavior, and emotions. After becoming skilled observers, I would like my students to use their tools to ask a few good questions, to creatively design a way of answering these questions, and to openly share their new knowledge with others. One of the beauties of psychology is its ability to translate across many disciplines and across many areas of life. Although my passion is for psychology in particular, one of the greatest goals I have is to teach my students to become motivated, insightful, and enthusiastic thinkers.

Teaching experience

It is with great excitement that I look ahead to being a professor, given the experiences that I have had with teaching over the past six years. I have been fortunate enough to be a teaching fellow in a number of courses beginning when I was an undergraduate at Stanford, and continuing during my time at Yale. In each of these courses, the professor offered me a great deal of autonomy to give a guest lecture and/or lead sections in addition to holding office hours, constructing exams, and grading papers. I have also had the opportunity to be a co-instructor in three courses: Social Psychology, Multivariate Statistics, and The Intelligent Emotions. Each course presented a wonderful opportunity to learn and to grow as a teacher. (Summaries of student evaluations of my instruction follow.)

I co-taught Social Psychology with another graduate student through Yale’s Summer Program. Among our students were Yale undergraduates, undergraduates from other universities, and advanced high school students. We designed the entire course and lectured, led discussions, and conducted demonstrations in every class. I learned a great deal about tailoring the pace and content of the material to the expertise and interests of the students, which was an exciting challenge given the diversity of the class. The Multivariate Statistics class that I co-taught was geared toward graduate students (with one or two talented undergraduates among the ranks). I worked closely with the professor, but gave a series of lectures over the course of the semester using many of my own materials. In this class, I learned how to make statistics fun, by appealing to the utility of the topic (for research and for better arguing a point in the real world) as well as by attempting to use compelling examples in each lecture. Finally, I co-taught The Intelligent Emotions on-line for Yale Alumni. This was an amazing experience in that I had never before had the opportunity to use the World Wide Web as a classroom. The experience presented its own challenges (e.g., Can enthusiasm for a subject be adequately communicated over cyberspace?) and its own strengths (e.g., having students from across the country and the globe, of all ages and backgrounds, participate in the class). Intimately linking technological advances with classroom experiences is certain to become the norm, and I feel fortunate to have already “gotten my feet wet” in this teaching medium.

Another domain in which I have gained teaching experience over the past few years is as a clinical psychologist in training. I was given the unique opportunity to be the Assistant Director of the Yale Psychological Services Clinic in my fourth year of graduate school. In that role, I not only assisted in the Assessment and Clinical Practice course for first-year graduate students, I also supervised these students in conducting clinical work and writing intake reports. One student described in the year-end evaluation that I was “a very sensitive supervisor who always made me feel my input was important.” Another described, “I can’t think of anything in Jerusha’s supervisory repertoire that could be improved. I think that she should keep doing what she is doing.” In commenting
on my written feedback on write-ups of clinical interviews, he describes, “Incredible! My previous supervisor was a journal editor...getting a report back from Jerusha reminded me of working with him!...Jerusha’s comments greatly improved the quality of my report, both in terms of content and writing style.”

As an adjunct to my commitment to clinical training, my colleagues and I are working on writing a training manual for treatment planning, goal-setting, and assessment that will be published by Guilford Press. A shortened version of our manual is now being used as part of Yale University’s clinical training program. Currently, in my clinical internship at McLean Hospital, I am leading 9 different treatment groups (e.g., cognitive behavioral therapy skills, depression and anxiety, body awareness, life transitions, goal setting, bipolar interpersonal issues) for individuals with severe anxiety, depression, and psychoses. Although these treatment groups are clearly therapeutic in nature, many of them are geared towards psychoeducation, which allows me to continue growing as a teacher as well as a clinician.

Mentoring goals and experience
My desire to engage, challenge, and inspire growth in my students is not limited to the classroom. Over the time that I was at Yale I worked with over a dozen undergraduates as a research mentor and closely advised three students on their senior projects. My desire to collaborate with students translates into the research domain; two of my papers that are “work in progress” are co-authored with undergraduates. It is my goal to share with students the awe and excitement, as well as the dedication and hard work, that comes along with using psychological research tools to ask and answer questions. All three of the undergraduates that I advised went on to graduate school—two are currently in education and one is a social psychologist in training (studying at the University of California at Berkeley).

Finally, it is critical to note that classes and workshops that feature pedagogical issues are a priority to me, and I hope to continue taking courses similar to those I have had at Yale (such as Peter Salovey’s Teaching Undergraduate Psychology and Yale’s Working at Teaching Seminar) in the future. I hold myself to the same standards that I hold my students. That is, I strive to become a skilled thinker and learner, and I believe that this process is life-long.

5.3.7 Teaching philosophy: Linguistics / educational psychology (new professor)

Students can benefit from a professor and advisor with a deep and broad background and knowledge in the content area, and in my experience as a graduate student, such qualities were true of the better professors I’ve had. My background was originally in theoretical and generative linguistics (particularly Optimality Theory), then in applied linguistics, language teaching, and pragmatics. However, I found myself unsatisfied with those approaches in and of themselves, due to the lack of a solid, strongly empirically and quantitatively grounded foundation or quantitatively driven research paradigm. My interests moved toward psycholinguistics, encompassing cognitive psychology, cognitive approaches to linguistics, experimental psychology, quantitative research methods, statistics, and practical experience from working in and running my advisor’s research lab. So embarking on what led to my current research focus years ago entailed retooling and becoming trained and rooted in a new paradigm and methodology. This broad theoretical and empirical background qualifies me as an instructor who can serve as a facilitator to effectively mentor and train students in my field, in its conceptual cognitive and linguistic knowledge, and its practice in a research setting. Such requires
a knowledgeable and resourceful instructor who can effectively communicate with students. With my background, I can teach linguistics concepts from a perspective that is informed by generative theory, cognitive psychology, empirical research, and pragmatics.

Being a linguist and a native English speaker has given me the opportunity to teach, as a part-time teaching assistant in Midwestern University for English, ESL and Educational Psychology, and as a full-time ESL instructor at another university. As a person with teaching experience and a broad background, over the years I have gained a sense of professionalism and knowledge that permeates my classroom teaching. Even as a student participating in graduate seminar courses, my professionalism and background come across, and I have gained good rapport with my professors as a result. An appropriate student-centeredness comes from a professor who can meet students’ needs for learning and training, who is professional and mature, who can put the students at ease, establish a comfortable learning environment and working relationship with students, and who balances professionalism with care and concern for students, and even a moderate sense of humor for the sake of a positive learning environment. Over the years as a teacher, graduate student, and lab manager, I have cultivated such qualities. The same qualities would of course apply to mentoring and advising students, particularly graduate students.

As a professor, then, I prefer a structured lecture-discussion format with students, in which students and I interact in a professional but cordial manner. For advanced graduate level courses in particular, I would of course follow the seminar-style lecture-discussion format that has been typical of my graduate level courses in psychology, consisting of presentations and discussion of research articles. This kind of format, which is the norm in graduate level psychology courses here, is what I would use in teaching various psycholinguistics courses and other content area course at the graduate or upper undergraduate levels.

One exception to this style that I have witnessed has been in the numerous statistics and research methods courses that I have taken, which are sometimes entirely lecture based, and some courses have been quite theoretical, with no practical application of the material to experimental design or interpretation of research. If teaching an introductory statistics or quantitative research methods class, I would present more of an overview of statistical techniques relevant to psycholinguistics research – e.g., rather than merely covering traditional ANOVAs and regression, I would at least introduce them to the basics of logistic regression, hierarchical linear modeling, factor analysis, and principal components analysis, so they could at least interact with more of the research literature and know what kinds of techniques to study further. I would also introduce a practical emphasis to such courses by discussing actual published research and evaluating the statistical methods used, and also by discussing published articles on problems and issues of statistical methods in psycholinguistic research – e.g., articles on adjusted F values for experiments with lexical stimuli, precautions for using ANCOVAs and MANOVAs, different means of calculating effect size statistics, and choice of appropriate statistical methods for certain types of research.

For graduate students, practical training and lab experience is as important as classroom learning, and an advising professor who can properly mentor students, especially neophyte students and lab assistants, is important for their intellectual and professional growth. Working in a lab and meeting unclear expectations of a supervisor or professor can be very stressful for graduate students, especially for new students in the field, and ultimately detrimental to their professional training and development, so I wish to be present and effectively mentor them. Years ago as a neophyte psycholinguistics researcher in a previous lab, learning an entirely new paradigm with no help or support was very difficult, and although I overcame those obstacles and became a skilled researcher and lab manager, I wish to spare my students such difficulties and instead let
them gain from the wisdom I have learned from my experiences.

Having worked as a lab research assistant and manager, I am able to work well, sympathetically, and cordially with labmates. I have trained and graduate students in lab procedures, facilitated their experiments, and helped them with research design and data analysis. I have also trained and supervised undergraduate research assistants in lab work and procedures, making sure they are well trained and feel supported. My training and professionalism in this domain will carry over into running my own research lab, and to advising graduate students and lab assistants, many of whom will be new students in the field of psycholinguistics and cognitive psychology.

With my diverse background, I have been able to teach a number of courses related to my current and past research, and could teach other courses in the future; e.g., various courses in psycholinguistics (introductory and advanced levels, discourse and sentence processing, lexical processing, L2 psycholinguistics, Chinese psycholinguistics), reading psychology, discourse psychology, research methods, and writing systems. My research will also of course benefit my teaching and my advisees, as the course work would connect directly with lab work and students’ own research. My diverse research and teaching experience naturally translate into my serving an effective teacher, researcher, and advisor.

6 References and further reading

7 Appendices

1. Philosophy of Adult Education Inventory

2. PAEI scoring sheet
1 Instructions

Each of the 15 items on the inventory begins with an incomplete sentence, followed by five different options that might complete the sentence. Underneath each option is a scale from 1 to 7, followed by a small letter in parentheses. For the present, ignore those letters; use only the numbers on the scale.

To complete the inventory, reach each sentence stem and each optional phrase that completes it. In the 1-7 scale, circle the number that most closely indicates how you feel about each option. The scale goes from 1 (strongly disagree) to 7 (strongly agree), with a neutral point (4) if you don’t have any opinion or aren’t sure about a particular option.

<table>
<thead>
<tr>
<th>strongly disagree</th>
<th>neutral</th>
<th>strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>(q)</td>
<td></td>
</tr>
</tbody>
</table>

Continue through all the items, reading the sentence stem and indicating how strongly you agree or disagree with each of the options. Don’t worry about the letter in parentheses at the end—we’ll refer to it later. Please respond to every option, even if you feel neutral about it. There are no right or wrong answers.

As you go through the inventory, respond according to what you most frequently or most likely would do. If it helps you to respond more easily, you may want to focus on a specific course that you teach or will teach. If you do focus on a particular course, choose one that you feel most comfortable teaching—one that you think best reflects your preferred style of teaching\(^1\).

Enjoy!

2 Questions

1. In planning an educational activity, I am most likely to:

Identify, in conjunction with learners, significant social and/or political issues and plan learning activities around them.

1 2 3 4 5 6 7 (h)

Clearly identify the results I want and develop a program [or class or workshop] that will achieve those results.

1 2 3 4 5 6 7 (c)

Begin with a lesson plan that organizes what I plan to teach, and how.

1 2 3 4 5 6 7 (a)

Assess learners’ needs and develop valid learning activities based on those needs.

1 2 3 4 5 6 7 (d)

Consider the areas of greatest interest to the learners and plan to deal with them, regardless of what they may be.

1 2 3 4 5 6 7 (f)

2. People learn best:

When the new knowledge is presented from a problem-solving approach.

1 2 3 4 5 6 7 (x)

When the learning activity is clearly structured and provides for practice and repetition.

1 2 3 4 5 6 7 (w)

Through dialogue or discussion with other learners and a group coordinator.

1 2 3 4 5 6 7 (z)

When the are free to explore, without the constraints of a “system”.

1 2 3 4 5 6 7 (y)

From an “expert” who knows what s/he is talking about.

1 2 3 4 5 6 7 (v)
3. The primary purpose of education is:

To facilitate personal development on the part of the learner.

1 2 3 4 5 6 7 (f)

To increase learners’ awareness of the need for social change and to enable them to effect such change.

1 2 3 4 5 6 7 (h)

To develop conceptual or theoretical understanding.

1 2 3 4 5 6 7 (a)

To establish the learners’ capacity to solve individual and societal problems.

1 2 3 4 5 6 7 (d)

To develop the learners’ competency and mastery of specific knowledge and skills.

1 2 3 4 5 6 7 (c)

4. Most of what people know:

Is a result of consciously pursuing their goals, solving problems as they go.

1 2 3 4 5 6 7 (x)

They have learned through critical or reflective thinking focused on important social and political issues.

1 2 3 4 5 6 7 (z)

They have learned through a trial-and-feedback process.

1 2 3 4 5 6 7 (w)

They have gained through self-discovery rather than some “teaching process”.

1 2 3 4 5 6 7 (y)

They have acquired through a systematic or comprehensive process.

1 2 3 4 5 6 7 (v)
5. Decisions about what to include in a lesson or learning activity:

Should be made mostly by the learner in consultation with a facilitator.

1 2 3 4 5 6 7 (f)

Should be based on what learners know and what the teacher believes they should know at the end of the activity.

1 2 3 4 5 6 7 (c)

Should be based on a consideration of key social, political, and/or cultural situations

1 2 3 4 5 6 7 (h)

Should be based on a consideration of the learners’ needs, interests, and problems.

1 2 3 4 5 6 7 (d)

Should be based on careful analysis by the teacher of the material to be covered and the concepts to be taught.

1 2 3 4 5 6 7 (a)

6. Good educators start planning instruction:

By considering the end behaviors or specific outcomes they are looking for and the most efficient ways of producing them in learners.

1 2 3 4 5 6 7 (w)

By identifying everyday problems (or other problems) that can be solved as a result of the instruction.

1 2 3 4 5 6 7 (x)

By clarifying the content, concepts, and/or theoretical principles to be taught.

1 2 3 4 5 6 7 (v)

By clarifying key social and political issues that affect the lives of the learners.

1 2 3 4 5 6 7 (z)

By asking learners to identify what they want to learn and how they want to learn it.

1 2 3 4 5 6 7 (y)
7. As an educator, I am most successful in situations:

That are unstructured and flexible enough to follow learners’ interests.

1 2 3 4 5 6 7 (f)

That are fairly structured, with clear learning objectives and built-in feedback to the learners.

1 2 3 4 5 6 7 (c)

Where I can focus on practical skills and knowledge that can be put to use in solving problems.

1 2 3 4 5 6 7 (d)

Where the scope of the new material is fairly clear and the subject matter is logically organized.

1 2 3 4 5 6 7 (a)

Where the learners have some awareness of social and political issues and are willing to explore the impact of such issues on their daily lives.

1 2 3 4 5 6 7 (h)

8. In planning an educational activity, I try to create:

The real world – problems and all – and to develop learners’ capacities for dealing with it.

1 2 3 4 5 6 7 (x)

A setting in which learners are encouraged to examine their beliefs and values and to raise critical questions.

1 2 3 4 5 6 7 (z)

A controlled environment that attracts and holds the learners, moving them systematically toward the objectives.

1 2 3 4 5 6 7 (w)

A clear outline of the content and the concepts to be taught or learned.

1 2 3 4 5 6 7 (v)

A supportive climate that facilitates self-discovery and interaction.

1 2 3 4 5 6 7 (y)
9. The learners’ feelings during the learning process:

Must be brought to the surface in order for learners to become truly involved in their learning.

1 2 3 4 5 6 7 (h)

(h) Provide energy that can be focused on problems or questions.

1 2 3 4 5 6 7 (d)

Will probably have a great deal to do with the way they approach their learning.

1 2 3 4 5 6 7 (f)

Are used by the skillful adult educator to accomplish the learning objectives.

1 2 3 4 5 6 7 (c)

Are likely to get in the way of teaching and learning by diverting the learners’ attention.

1 2 3 4 5 6 7 (a)

10. The teaching methods I prefer to use:

Focus on problem solving and present real challenges to the learner.

1 2 3 4 5 6 7 (x)

Emphasize practice and feedback to the learner.

1 2 3 4 5 6 7 (w)

Are mostly non-directive, encouraging the learner to take responsibility for his/her own learning.

1 2 3 4 5 6 7 (y)

Involve learners in dialogue or discussion and critical examination of controversial issues.

1 2 3 4 5 6 7 (z)

Are determined primarily by the subject or content to be covered.

1 2 3 4 5 6 7 (v)
11. When learners are uninterested in a subject, it is probably because:

They do not realize how serious the consequences of not understanding or not learning the subject may be.

1 2 3 4 5 6 7 (h)

They do not see any benefit for their daily lives.

1 2 3 4 5 6 7 (d)

The teacher does not know enough about the subject or is unable to make it interesting to the learner.

1 2 3 4 5 6 7 (a)

They are not getting adequate practice or feedback during the learning process.

1 2 3 4 5 6 7 (c)

They are not ready to learn it or it is not a high priority for them personally.

1 2 3 4 5 6 7 (f)

12. Differences among learners:

Are relatively unimportant as long as the learners gain a common base of understanding through the learning experience.

1 2 3 4 5 6 7 (v)

Enable them to learn best on their own over time and in their own way.

1 2 3 4 5 6 7 (y)

Are primarily due to the differences in their life experiences, and will usually lead them to make different applications of new knowledge and skills to their own situations.

1 2 3 4 5 6 7 (x)

Arise from their particular cultural and social situations and should not be minimized even as they recognize common needs and problems.

1 2 3 4 5 6 7 (z)

Will not interfere with their learning if each learner is given adequate opportunity for practice and reinforcement.

1 2 3 4 5 6 7 (w)
13. Evaluation of learning outcomes:

Is not of great importance and may not be possible, because the impact of learning may not be evident until much later.

1 2 3 4 5 6 7 (h)

Should be built into the system, so that learners will continually receive feedback and can adjust their performance accordingly.

1 2 3 4 5 6 7 (c)

Is best done by the learners themselves, for their own purposes.

1 2 3 4 5 6 7 (f)

Lets me know how much learners have increased their conceptual understanding of the new material.

1 2 3 4 5 6 7 (a)

Is best accomplished when the learner encounters a problem, either in the learning setting or the real world, and successfully resolves it.

1 2 3 4 5 6 7 (d)

14. My primary role as a teacher is to:

Guide students through structured learning with well directed feedback.

1 2 3 4 5 6 7 (w)

Systematically lead students in acquiring new information and understanding underlying theories and concepts.

1 2 3 4 5 6 7 (v)

Help learners to identify and solve problems, or solve them better.

1 2 3 4 5 6 7 (x)

Help learners’ awareness of environmental, social, and/or political issues and help them learn how to have an impact on these situations.

1 2 3 4 5 6 7 (z)

Facilitate, but not direct, learning activities.

1 2 3 4 5 6 7 (y)
15. In the end, if learners have not learned what was taught:

The teacher has not actually “taught”.

The need to repeat the experience, or a portion of it.

They may have learned something else which they consider just as interesting or useful.

They do not realize how learning will enable them to significantly influence society.

It is probably because they are unable to make practical application of the new knowledge to problems in their daily lives.

[Go to the next page to find out how to score your answers.]
3 Scoring

Now go back and find the small letters in parentheses on the far right, and add up your scores according to those letters below. E.g., if you circled ‘5’ for 1(h), then enter it under ‘h’ below, and add up the scores. The column subtotals should range between 7 and 56.

\[
\begin{array}{cccccccccc}
\text{[item]} & a & v & c & w & d & x & f & y & h & z \\
\hline
\text{[add scores here]} & & & & & & & & & & \\
\text{[subtotal]} & & & & & & & & & & \\
\end{array}
\]

Now add the subtotals as indicated below. These totals should range between 15 and 105.

\[
\begin{align*}
L &= (a + v) = \\
B &= (c + w) = \\
P &= (d + x) = \\
H &= (f + y) = \\
R &= (h + z) =
\end{align*}
\]

Each of your scores reflects a particular philosophy of education–liberal\(^2\), behaviorist, progressive, humanistic, or radical.

\[
\begin{align*}
L &= \text{liberal education: education for intellectual development} \\
B &= \text{behaviorist education: education for behavioral change} \\
P &= \text{progressive education: education for practical problem-solving} \\
H &= \text{humanistic education: education for self-actualization} \\
R &= \text{radical education: education for major social change}
\end{align*}
\]

\(^2\text{Note: ‘Liberal’ education does not refer to political views, but to the traditional liberal arts approach to education. ‘Humanistic’ should not be confused with other uses and meanings of this word outside the field of education.}\]
On another handout or in an accompanying guidebook, you will find brief descriptions of these philosophies of education. Your highest score reflects the philosophy that is closest to your own beliefs, and that you most strongly agree with; your lowest score is the most distant from your beliefs. You may likely have one or two other secondary philosophies. If you find scores nearly equal among several philosophies, you may want to spend some time clarifying your beliefs and values and looking for possible contradictions among them.

Most educators have a clear primary philosophical orientation, or share two that are stronger than others. Typical combinations are liberal + behaviorist, progressive + humanistic, progressive + radical, and humanistic + radical. On the other hand, it is quite unlikely that you would have high scores for both in combinations such as liberal + radical, or behaviorist + humanistic. These philosophies have key underlying assumptions that are inherently contradictory. (For example, the primary purpose of behaviorist education is to ensure compliance with expectations or standards set by others, whereas humanistic education is intended to enhance individual self-development – which may or may not meet anyone else’s expectations or standards.)

There is no “right” or “wrong” philosophy of education.

The inventory is designed to reflect back to you some of your own beliefs, not to make judgments about those beliefs. It is up to you to decide how your beliefs may influence your decisions and actions as an educator, and how your personal educational philosophy may be well suited, or perhaps not the best match, for the educational setting in which you work.